

Solve each problem.

- 1) Using 75 boxes of nails a carpenter was able to finish 150 bird houses. Write an equation that can be used to express the relationship between the total number of birdhouses completed(t) and the boxes of nails(b) used.
- 2) A chef bought 40 bags of oranges at the supermarket and it cost her \$88.00. Write an equation that can be used to express the relationship between the total cost(t) and the number of bags of oranges(b) purchased.
- 3) It cost \$523.75 for 25 pounds of beef jerky. Write an equation that can be used to express the relationship between the total cost(t) and the pounds of beef jerky(p) purchased.
- 4) A school had to buy 72 new science books and it ended up costing \$3,268.80 total. Write an equation that can be used to express the relationship between the total cost(t) and the number of books(b) purchased.
- 5) A company used 300 lemons to make 60 bottles of lemonade. Write an equation that can be used to express the relationship between the total number of lemons needed (t) for each bottle of lemonade (b).
- 6) You can buy 4 pieces of chicken for \$4.20. Write an equation that can be used to express the relationship between the total price(t) and the pieces of chicken(c) you buy.
- 7) The combined weight of 19 concrete blocks is 282.91 kilograms. Write an equation that can be used to express the relationship between the total weight(t) and the number of concrete blocks(b) you have.
- 8) Lana traveled 104.72 kilometers in 88 minutes. Write an equation that can be used to express the relationship between the total kilometers traveled(t) and the minutes(m) it took.
- **9)** A phone store earned \$340.10 after they sold 95 phone cases. Write an equation that can be used to express the relationship between the total money earned (t) and the number of cases(c) sold.
- **10**) At a carnival it costs \$66.78 for 18 tickets. Write an equation that can be used to express the relationship between the total cost (t) and the number of tickets(n) you buy.

Answers

- 1. _____
- 2.
- 3.
- 4. _____
- 5. _____
- 6.
- 7. _____
- 8. _____
- 9.
- 10. _____

Solve each problem.

- 1) Using 75 boxes of nails a carpenter was able to finish 150 bird houses. Write an equation that can be used to express the relationship between the total number of birdhouses completed(t) and the boxes of nails(b) used.
- 2) A chef bought 40 bags of oranges at the supermarket and it cost her \$88.00. Write an equation that can be used to express the relationship between the total cost(t) and the number of bags of oranges(b) purchased.
- 3) It cost \$523.75 for 25 pounds of beef jerky. Write an equation that can be used to express the relationship between the total cost(t) and the pounds of beef jerky(p) purchased.
- 4) A school had to buy 72 new science books and it ended up costing \$3,268.80 total. Write an equation that can be used to express the relationship between the total cost(t) and the number of books(b) purchased.
- 5) A company used 300 lemons to make 60 bottles of lemonade. Write an equation that can be used to express the relationship between the total number of lemons needed (t) for each bottle of lemonade (b).
- 6) You can buy 4 pieces of chicken for \$4.20. Write an equation that can be used to express the relationship between the total price(t) and the pieces of chicken(c) you buy.
- 7) The combined weight of 19 concrete blocks is 282.91 kilograms. Write an equation that can be used to express the relationship between the total weight(t) and the number of concrete blocks(b) you have.
- 8) Lana traveled 104.72 kilometers in 88 minutes. Write an equation that can be used to express the relationship between the total kilometers traveled(t) and the minutes(m) it took.
- **9)** A phone store earned \$340.10 after they sold 95 phone cases. Write an equation that can be used to express the relationship between the total money earned (t) and the number of cases(c) sold.
- **10**) At a carnival it costs \$66.78 for 18 tickets. Write an equation that can be used to express the relationship between the total cost (t) and the number of tickets(n) you buy.

Answers

$$t = b2$$

$$t = b2.20$$

$$t = p20.95$$

$$t = b45.40$$

$$t = \mathbf{b5}$$

$$t = c1.05$$

$$t = b14.89$$

$$t = m1.19$$

$$t = c3.58$$

$$t = n3.71$$